INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE

 B.MATH - Third Year, 2019-20

 B.MATH - Third Year, 2019-20}

Statistics - IV, Midterm Examination, February 27, 2020 Marks are shown in square brackets.

1. Consider an $I \times J$ contingency table where the (i, j) cell has probability $p_{i j}$ and observed count $n_{i j}$. Find the maximum likelihood estimate of $p_{i j}$
(a) when no restrictions are placed on the row and column factors;
(b) when it is known that the row and column factors are independent.[10]
2. Let $U_{(i)}^{(n)}$ denote the i th order statistics from a random sample of size n from $U(0,1)$. Show that, for each $i, 1 \leq i \leq n$, $U_{(i)}^{(n)}-\frac{i}{n} \longrightarrow 0$ in probability as $n \longrightarrow \infty$.
3. Consider a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from a continuous distribution with c.d.f. F and suppose we want to test $H_{0}: F=F_{0}$ where F_{0} is a fully specified c.d.f. Define the directional and non-directional KolmogorovSmirnov test statistics, D_{n}^{+}, D_{n}^{-}and D_{n} for testing H_{0}. Show that, under H_{0},
(a) D_{n}^{-}is distribution free;
(b) D_{n}^{-}converges to 0 in probability as $n \longrightarrow \infty$.
4. Two methods, A and B , were used in a determination of the latent heat of fusion of ice. The investigators wished to check whether the methods differed, and if so, whether method B typically gave a higher reading. The following table gives the change in total heat from ice at $-.72^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.

Method A	79.97	80.01	79.95	80.02	79.94
Method B	80.05	79.98	80.04	80.03	

Use an appropriate nonparametric method for this investigation.
5. Suppose we have a random sample X_{1}, \ldots, X_{n} from a continuous distribution with c.d.f. F and density f, both of which are completely unknown.
(a) Define the histogram estimate of f.
(b) Show that the histogram is a consistent estimator of f if the interval width is chosen to be proportional to $1 / \log (n)$.

